Resistive wall mode feedback stabilization in burning plasma experiments

نویسنده

  • A. M. Garofalo
چکیده

We use a simple model [Garofalo, Jensen, and Strait, to be published in Phys. Plasmas] to analyze the systems for feedback stabilization of the resistive wall mode (RWM) in proposed burning plasma experiments. In ITER, the presence of several conducting structures close to the control coils, but far from the plasma, leads to a slow feedback response time compared to the time scale of the RWM growth. In FIRE, the copper shell passive stabilizer sets a relatively long time scale for the RWM growth, therefore the effects of higher resistivity structures close to the coils and far from the plasma are nearly negligible. RWM feedback control should be able to raise the stable βΝ up to near the ideal-wall limit in FIRE, with moderate requirements on the feedback electronics bandwidth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in Tokamaks

This paper describes the modeling of the feedback control and rotational stabilization of the resistive wall mode (RWM) in tokamaks. A normal mode theory for the feedback stabilization of the RWM has been developed for an ideal plasma with no toroidal rotation. This theory has been numerically implemented for general tokamak geometry and applied to the DIII-D tokamak. It is found that feedback ...

متن کامل

Resistive Wall Mode Stabilization in Slowly Rotating High Beta Plasmas

DIII-D experiments show that the resistive wall mode (RWM) can remain stable in high β scenarios despite a low net torque from nearly balanced neutral beam injection (NBI) heating. The minimization of magnetic field asymmetries is essential for operation at the resulting low plasma rotation of less than 20 krad/s (measured with charge exchange recombination spectroscopy using C VI emission) cor...

متن کامل

Resistive Wall Mode Stabilization and Plasma Rotation Damping Considerations for Maintaining High Beta Plasma Discharges in NSTX

Maintaining steady fusion power output at high plasma beta is an important goal for future burning plasmas such as in ITER advanced scenario operation and a fusion nuclear science facility. Research on the National Spherical Torus Experiment (NSTX) is investigating stability and control physics to maintain steady high plasma normalized beta with minimal fluctuation. Resistive wall mode (RWM) in...

متن کامل

EX/P9-5 Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas

The resistive wall mode (RWM) and neoclassical tearing mode (NTM) have been simultaneously suppressed in the DIII-D for durations over 2 seconds at beta values 20% above the no-wall limit with modest electron cyclotron current drive (ECCD) and low plasma rotation. The critical plasma rotation was significantly lower than reported at the IAEA FEC in 2006. However, even in this stabilized regime,...

متن کامل

Active Feedback Control of the Wall Stabilized External Kink Mode*

Active feedback control has been used in the HBT-EP tokamak to control the growth of the n=1 resistive wall mode. These experiments were carried out using a set of thin stainless-steel wall segments with magnetic diffusion time of ~0.4 ms positioned near the plasma boundary. In plasmas that would normally exhibit a strong ideal n = 1 external kink mode without a nearby conducting wall, the resi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002